
Appendix B
Probability

Probability Spaces and Random Variables
A probability space is defined by a triple where is a given set of

elementary outcomes, is a collection of subsets of (each such subset B is called
an event), and P(·) is a probability measure that assigns a nonnegative number P(B)
to each subset B in

The collection of subsets must satisfy

If B is in then so is its complement

If are events in then and are also in

The probability measure must satisfy

for all

If are disjoint events, the

A random variable is a function mapping elementary outcomes to real numbers,
and is denoted —or simply X, where the dependence on is

implicit. The cumulative distribution function (c.d.f.) of a random variable X—or
just distribution function for short—is defined by

If X takes on only countable values, we define the probability-mass function (pmf) by
the function

Such a random variable is said to be discrete. If F is differentiate, then the probability-
density function is defined by

Such a random variable is said to be continuous.
Let denote a vector of random variables and a

real vector. Then we define the joint distribution of X by
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The random variables are said to be independent random variables if

where (which is referred to as the marginal distribution of
If, in addition, for all then the random variables are said to be
independent and identically distributed—or i.i.d. for short.

Expectations and Moment-Generating Functions
The expected value—or mean—of a random variable X is defined by the integral

where the right-hand side above is equal to if X is continuous and
when X is discrete. For a general function the ex-

pected value of is defined by

The variance of X is defined as

If X and Y are two random variables, the covariance is defined by

The moment-generating function of X is defined as

The moment of X is defined as If the moment-generating function exists
then one can determine the moment of X using the fact that

where denotes the derivative with respect to
The moment-generating function is also useful for analyzing sums of random vari-

ables. Indeed, if X and Y are two independent random variables with moment-
generating functions and respectively, and Z = X + Y, then

That is, the moment-generating function of a sum of independent random variables
is simply the product of their individual moment-generating functions.
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Inequalities
Jensen’s inequality states that if is a convex function, then

This is often useful in obtaining bounds on stochastic optimization problems.
Another useful bound in RM problems is due to Gallege [200] and involves a bound

on the function (the positive part of X — It states
that for any random variable X with mean and finite variance

For example, if X is demand and is a capacity level, then is the rejected
demand (spilled demand) and the above bound provides an upper bound on the
expected spilled demand

Some Useful Distributions
We next provide the basic definitions of the most commonly used distributions in

RM problems.

Discrete Distributions
Bernoulli
A random variable X has a Bernoulli distribution if it takes on only two values, 0 and
1. A Bernoulli distribution is characterized by a single parameter (the probability
that X = 1) with In RM, it is often used as the model of a single
cancellation.

The basic definitions and properties are

Binomial
A random variable X has a binomial distribution if it is the sum of independent
Bernoulli random variables. For example, the number of cancellations in a group
of reservations when each independently cancels with probability A binomial
distribution is characterized by the two parameters and with and

The basic definitions and properties are
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Poisson
In RM, the Poisson distribution is used as a model of demand or as a (continuous
parameter) approximation to the Binomial distribution. It is characterized by a single
nonnegative parameter (its mean).

The basic definitions and properties are

Continuous Distributions
Uniform
A uniform distribution is defined by two constants and represents a case where
the random variable is equally likely to assume any value in the interval

The basic definitions and properties are

Exponential
The exponential distribution is defined by a single parameter

The basic definitions and properties are
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Normal
The normal (or Gaussian) distribution is frequently used as a model of demand. It is
characterized by two parameters, its mean and its variance

The basic definitions and properties are

The normal has the property that if X and Y are two independent normal random
variables, then the sum X + Y also has a normal distribution (it is “closed under ad-
dition”). For example, if X and Y are independent with means and variances

(respectively), then their sum X + Y has a normal distribution with mean
and variance

Gumbel
The Gumbel (or double-exponential) distribution is frequently used in discrete-choice
models because it is “closed under maximization.” That is, the maximum of two
Gumbel random variables is also a Gumbel random variable. It is characterized by
two parameters, a scale parameter and location parameter

The basic definitions and properties are

where  is Euler’s constant and is the extension of the factorial function
to real numbers

If and are two independent Gumbel random variables with parameters
and respectively, then is a Gumbel random variable with para-
meters

Stochastic Monotonicity and Convexity
Consider a random variable X that depends on some parameter so that

That is, is a random function of For example, X could be the number
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of customers who show up out of reservations, in which case

where are i.i.d. Bernoulli random variables with and

Given a function suppose we are interested in determining properties of the
expected value as a function of For example, if is increasing in is

increasing in If is convex in is convex in Stochastic
monotonicity and convexity identify classes of random variables for which such
statements can be made. A good source for this material is the series of papers by
Shaked and Shantikumar [460, 461] and their subsequent book [462].

DEFINITION B.1 The random function is stochastically increasing in
if for all

A random function is stochastically decreasing in if — is stochastically
increasing. An equivalent definition is provided by the following proposition:

PROPOSITION B.1 is stochastically increasing in if for any
there exists two random variables and defined on a common probability space

such that and are equal in distribution to and (respec-
tively), and they satisfy for all

Continuing our example, we see that if where are i.i.d.
Bernoulli random variables, then is stochastically increasing, since we can con-
sider to define an infinite sequence and consider to be the sum of
the first   variables in this sequence. For every the sums and
will have the required distribution and for every such sequence

The following proposition follows easily from this sample path definition of monotonic-
ity:

PROPOSITION B.2 is stochastically increasing in if and only if for any
real valued, increasing function is increasing in

Similarly, one can define a notion of stochastic convexity for

DEFINITION B.2 is stochastically convex (SCX) if for any real valued,
convex function is convex in

We say is stochastically concave (SCV) if  –   is stochastically convex, and
we say is stochastically linear if it is both stochastically convex and stochastically
concave.

To verify whether the above holds is often difficult. However, two stronger notions
of stochastic convexity are quite useful and both imply stochastic convexity. These
are:

DEFINITION B.3 is said to be strongly stochastically convex  (SSCX) if
where Z is a random variable independent of and is convex in

for every value of Z.
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For example, suppose where Z is a standard normal random
variable. Then is normal with mean and standard deviation and is
strongly stochastically convex in

A somewhat weaker version of stochastic convexity is the following:

DEFINITION B.4   is stochastically convex in the sample-path sense
(SCX-sp) if for any four values satisfying and

there exist random variable defined on a common
probability space such that is equal in distribution to
and

for all

To illustrate, we show that the sum of Bernoulli random variables is stochastically
convex (and concave) in this sample path sense. To do so, let be
integers satisfying and and let define an
infinite sequence of i.i.d. Bernoulli random variables as before. Note that

(else and define

Note is equal in distribution to since each is the sum of i.i.d. Bernoulli
random variables, and by construction

so is stochastically convex in the sample path sense.
The following proposition relates these versions of stochastic convexity:

PROPOSITION B.3

So showing is either strongly stochastically convex or stochastically convex in
the sample path sense, implies that is stochastically convex. Again, returning to
our example, this implies that if is the sum of i.i.d. Bernoulli random variables
and is a convex function, the is convex in


